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Abstract: Given a graph G, a total k-coloring of G is a simultaneous coloring of
the vertices and edges ofGwith at most k colors. If ∆(G) is the maximum degree
ofG, then no graph has a total ∆-coloring, but Vizing conjectured that every graph
has a total (∆+2)-coloring. This Total Coloring Conjecture remains open even for
planar graphs. This article proves one of the two remaining planar cases, showing
that every planar (and projective) graph with ∆ ≤ 7 has a total 9-coloring by means
of the discharging method. c© 1999 John Wiley & Sons, Inc. J Graph Theory 31: 67–73, 1999
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1. INTRODUCTION

Given a graph G, then an element of G is a member of V (G) ∪ E(G). Let two
elements of a graph G be adjacent if they are either adjacent or incident in the
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traditional sense. Given a graph G, a total k-coloring of G is a function that takes
each element to {1, . . . , k}, such that adjacent distinct elements receive distinct
colors. Given a graph G, let ∆(G) be the maximum vertex degree of G. If the
graph is clear from the context, ∆ will be used. Clearly, no graph has a total ∆-
coloring. In 1964, Vizing [9] (see also [2]) made the following conjecture, known
as the Total Coloring Conjecture.

Conjecture 1.1. Every graph has a total (∆ + 2)-coloring.
This conjecture is trivial for ∆ ≤ 2. Rosenfeld [7] and Vijayaditya [8] solved it

for ∆ = 3. Kostochka solved the ∆ = 4 [5] and ∆ = 5 [6] cases.
The conjecture remains open even for planar graphs, but more is known. Borodin

proved it for planar graphs with ∆ ≥ 9. The ∆ = 8 case was solved for planar
graphs by Yap [10] and Andersen [1]. Thus, the only two cases for planar graphs
that remained were for ∆ = 6 and ∆ = 7.

This article proves that every planar graph with ∆ ≤ 7 has a total 9-coloring.
Thus, the only case remaining for planar graphs now is the ∆ = 6 case.

Section 2 describes thirteen special types of vertices. Section 3 uses the discharg-
ing method to prove that every planar graph (and every projective planar graph)
has one of these special vertices. Section 4 shows that no graph that is minimal
with respect to not having a total 9-coloring has one of these special vertices. This
combines to give the main result, stated below.

Theorem 1.1. Every planar or projective planar graph with ∆ ≤ 7 has a total
9-coloring.

The authors have hope that the discharging method will be able to complete
the proof of the total coloring conjecture at least for planar and projective planar
graphs.

2. SPECIAL VERTICES

To describe the structures of this section, some notation will be introduced. Let
a k-vertex be a vertex of degree k. Let an at most k-vertex, or simply an
(≤ k)-vertex, be a vertex of degree at most k. Let (≥ k)-vertex be defined
analogously. Also, let k-face, (≤ k)-face, and (≥ k)-face be defined analo-
gously.

Given a graph G and integers i, j1, . . . , jk with 2 ≤ k ≤ i, let a (j1, . . . , jk)
around an i be an i-vertex x of G such that, for each m ∈ {1, . . . , k}, there is
an (≤ jm)-vertex ym of G, the vertices y1, . . . , yk are distinct neighbors of x,
and further, that for each m ∈ {1, . . . , k − 1}, ym is adjacent to ym+1. Similarly,
given a graph G and integers i, j1, . . . , ji, let a (j1, . . . , ji) surrounding an i be
an i-vertex x of G such that, for each m ∈ {1, . . . , i}, there is an (≤ jm)-vertex
ym of G, the vertices y1, . . . , yi are the neighbors of x, and further, that, for each
m ∈ {1, . . . , i}, ym is adjacent to y(mmod i)+1. For instance, a (7, 7) around a 3 is
a 3-vertex in a triangle with two (≤ 7)-vertices.
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Let a vertex be special if it is one of the following (for now, ignore the second
column):

an (≤ 2)-vertex x adjacent to an (≤ 7)-vertex y −xy
a 3-vertex x adjacent to an (≤ 6)-vertex y −xy
a 4-vertex x adjacent to an (≤ 5)-vertex y −xy

a (7, 7) around a 3 −xy1
a (6, 7) around a 4 −xy1

a (7, 7, 7) around a 4 −xy2
a (5, 6, 7) around a 5 −xy1
a (5, 7, 5) around a 5 −xy1 − xy3

a (5, 7, 7, 7, 5) around a 5 +y1y5 − xy1 − xy5
a (5, 7, 6, 7, 6) around a 5 +y1y5 − xy1 − xy3
a (5, 7, 7, 6, 6) around a 5 +y1y5 − xy1 − xy4

a (6, 6, 7, 7, 7) surrounding a 5 −xy1 − xy2
a (7, 6, 7, 6, 7) surrounding a 5 −xy2 − xy4

The next section will show that every planar or projective planar graph with
∆ ≤ 7 has a special vertex.

3. DISCHARGING

This section will deal with connected graphs embedded on the plane and the pro-
jective plane. Given a graph G embedded on either of these surfaces, let v, e, and
f be, respectively, the number of vertices, edges, and faces of this embedding of
G. Euler’s formula states that, if a connected graph G is embedded in the plane,
then v − e+ f = 2, and if G is embedded in the projective plane (without loss of
generality, each face is an open 2-cell, or this embedding can be interpreted to be
on the plane), then v − e+ f = 1.

Let an embedded graph G be charged, if a function ch is defined as follows: for
each member x of V (G) ∪ F (G), let ch(x) := 4− deg(x). The following lemma
is the basic premise of the discharging method.

Lemma 3.1. Let G be a charged (connected) graph, which is embedded in the
plane or the projective plane. Then∑

x∈V (G)∪F (G)

ch(x) ≥ 4.

Proof. Assume that the lemma is false. Let G be a charged graph embedded on
the plane or the projective plane not satisfying the conclusion of the lemma. Thus,
Euler’s formula states that v − e + f ≥ 1. This may be restated as 4v − 4e + 4f
≥ 4, or 4v−2e+4f−2e ≥ 4. Since

∑
x∈V deg(x) = 2e, and

∑
A∈F deg(A) = 2e,

it follows that
∑
x∈V (4− deg(x)) +

∑
A∈F (4− deg(A)) ≥ 4, which is equivalent

to the conclusion of the lemma.
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A corollary to Lemma 3.1 is the classic result that every graph embedded in the
plane has either an (≤ 3)-vertex or a 3-face. This is true, because a positive sum
must have a positive term. If a vertex x has ch(x) > 0, it is an (≤ 3)-vertex. If a
face A has ch(A) > 0 (since the graph is simple), it is a 3-face. By discharging,
or locally redistributing the positive charge away from (≤ 3)-vertices and 3-faces,
one can prove the existence in a planar graph of other small structures. This is what
is done next, to show that every planar (and projective planar) graph with ∆ ≤ 7
has a special vertex.

Let a (j, k)-edge be an edge adjacent to a j-vertex and a k-vertex. Let an
(≤ j,≥ k)-edge be defined in the obvious way.

Let a charged graph G be discharged, if a function ch′ is defined by modifying
ch according to Rules 1 to 5 below. It is convenient for counting purposes within
the proof to describe some of the rules in the following manner: send k from x
through y to z. The net effect of this rule decreases the charge at x by k, leaves
the charge of y unchanged, and increases the charge of z by k. But for counting
purposes, x sends the charge to y, and z receives the charge from y.

(1) For each (3, 7)-edge α, and for each (≥ 4)-face A adjacent to α, send 3
14

from the 3-vertex adjacent to α through A to the 7-vertex adjacent to α.
(2) For each (≤ 5,≥ 6)-edge α adjacent to a 3-faceA and an (≥ 4)-faceB, send

1
6 from A through B to the (≥ 6)-vertex adjacent to α.

(3) For each 3-face A, and for each 7-vertex x adjacent to A, send 3
7 from A to

x.
(4) For each 3-face A, and for each 6-vertex x adjacent to A, send 1

3 from A to
x.

(5) For each 3-face A adjacent to k > 0 5-vertices, which, after applying Rules
1 to 4, still has charge c > 0, send c

k from A to each 5-vertex adjacent to A.

Theorem 3.1. Every graphG that is planar or projective planar and has ∆(G) ≤
7 contains a special vertex.

Proof. For a contradiction, assume that the theorem is false. Let G be a planar
or projective planar graph with ∆ ≤ 7. Embed G in the plane or the projective
plane. Let G be charged, and then discharged.

By examining each face A according to its degree, it will be shown that ch′(A)
≤ 0.

Let A3 be a 3-face of G. Note that ch(A3) = 1. If A3 is adjacent to a 3-vertex,
then that vertex is a (7, 7) around a 3 and is special.

IfA3 is adjacent to a 4-vertex x, then either x is a (6, 7) around a 4 and is special,
or A3 is adjacent to two 7-vertices and sends 3

7 to each of them by Rule 3. Also,
either x is a (7, 7, 7) around a 4 and is special, or A3 sends 1

3 to its adjacent faces
by Rule 2, and ch(A3) = − 4

21 .
If A3 is adjacent to a 5-vertex, then it clearly sends out at least 1 by Rules 2 to

5, and ch(A3) ≤ 0. Thus, A3 is adjacent to three (≥ 6)-vertices, and sends out at
least 1 by Rules 3 and 4, and ch(A3) ≤ 0.
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Let A be an (≥ 4)-face of G. Note that ch(A) ≤ 0, and since no charge is sent
into A (but possibly through it), ch′(A) ≤ 0 as well.

Next, the vertices will be considered, with corresponding results.
Each (≤ 2)-vertex is special.
Let x3 be a 3-vertex of G. Note that ch(x3) = 1. If x3 has a neighbor of degree

at most 6, then x3 is special. Thus, x3 is adjacent to three 7-vertices. If x3 is
adjacent to a 3-face, then it is a (7, 7) around a 3 and is special. Thus, x3 is adjacent
to three (≥ 4)-faces. It follows that x3 sends 3

7 to each of those faces by Rule 1.
Thus, ch′(x3) = −2

7 .
Let x4 be a 4-vertex. Note that ch(x4) = 0. Since the Rules do not affect this

charge, ch′(x4) = 0 as well.
Let x5 be a 5-vertex. Note that ch(x5) = −1. Also, the only charge that x5

receives is by Rule 5.
Let A be a 3-face adjacent to x5. Note that A is not adjacent to an (≤ 4)-vertex,

or such a vertex would be special. If A is adjacent to no 7-vertex, then A sends
at most 1

3 into x5. If A is adjacent to one 7-vertex and two 5-vertices, then A
sends at most 2

7 into x5. If A is adjacent to a 7-vertex and a 6-vertex, then A
sends at most 5

21 into x5. If A is adjacent to two 7-vertices, then A sends at most
3
21 into x5. In any case, A sends at most 1

3 into x5. Clearly, if x5 is adjacent to
at most three 3-faces, ch′(x5) ≤ 0. Suppose that the vertices adjacent to x5 are
y1, . . . , y5, in a cyclic ordering according the embedding. It is easy to see that each
of y1, . . . , y5 is an (≥ 5)-vertex, or it would be special. Without loss of generality,
for i ∈ {1, 2, 3, 4}, Ti := x5, yi, yi+1 is a 3-face of G.

Assume that A is adjacent to exactly four 3-faces. It cannot be that both y1 and
y5 are 5-vertices, or x5 would be a (5, 7, 7, 7, 5) around a 5 and would be special.

Suppose that deg(y1) = 5, and deg(y5) = 6. Since x5 is neither a (5, 7, 6, 7,
6) around a 5 nor a (5, 7, 7, 6, 6) around a 5, it follows that each of y2, y3, y4 is a
7-vertex. Thus, x5 receives at most 2

7 from T1, at most 1
7 from each of T2, T3, and

at most 5
21 from T4. Thus, ch′(x5) ≤ − 4

21 .
Suppose that deg(y1) = 5, and deg(y5) = 7. Since x5 is not a (5, 6, 7) around

a 5, then deg(y2) = 7, and either deg(y3) = 7 or deg(y4) ≥ 6. If deg(y3) = 7,
then x5 receives at most 2

7 from each of T1, T3, T4 and at most 1
7 from T2, and

ch′(x5) ≤ 0. If deg(y4) ≥ 6, then x5 receives at most 2
7 from T1, at most 5

21 from
T2, at most 1

3 from T3, and at most 1
14 from T4 (since T4 sends out at least 1

6 by
Rule 2). In this case, ch′(x5) ≤ − 1

14 .
Suppose that deg(y1) ≥ 6, and deg(y5) ≥ 6. Suppose that deg(y1) = 6. Here,

x5 receives at most 1
3 from T2. Note that T1 sends out at least 1

6 by Rule 2, and at
least 1

3 by Rule 4. If deg(y2) ≥ 6, then T1 sends out at least 2
3 by Rules 3 and 4. If

deg(y2) = 5, then, since y2 is not a (5, 6, 7) around a 5, the edge y1y2 is adjacent
to an (≥ 4)-face, and T1 sends out 1

3 by Rule 2. In either case, x5 receives at most
1
6 from T1. Also, x5 receives a total of at most 1

2 from T1 and T2.
Suppose that deg(y1) = 7. Note that T1 sends out at least 1

6 by Rule 2, and at
least 3

7 by Rule 3. If deg(y2) ≥ 6, then T1 sends out a total of at least 16
21 by Rules
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3 and 4, and x5 receives at most 1
14 from T1. Since x5 receives at most 1

3 from T2,
it follows that x5 receives a total of at most 17

42 from T1 and T2. If deg(y2) = 5,
then, since x5 is not a (5, 6, 7) around a 5, it follows that deg(y3) = 7. In this case,
x5 receives at most 2

7 from T2. Also, x5 receives at most 17
84 from T1. Thus, x5

receives a total of at most 41
84 from T1 and T2 in this case.

In any case, x5 receives a total of at most 1
2 from T1 and T2. Symmetrically, x5

receives a total of at most 1
2 from T3 and T4. Thus, ch′(x5) ≤ 0.

Assume that x5 is adjacent to five 3-faces. Since x5 is neither a (6, 6, 7, 7, 7)
surrounding a 5 nor a (7, 6, 7, 6, 7) surrounding a 5, x5 is adjacent to at least four
7-vertices, say y1, . . . , y4. Thus, x5 receives at most 1

7 from each of T1, T2, T3, and
at most 5

21 from each of the other two 3-faces. In this case, ch′(x5) ≤ − 2
21 .

Let x6 be a 6-vertex of G. Note that ch(x6) = −2. Since x6 is adjacent to no
3-vertex, x6 receives at most 1

3 from each face adjacent to it, and ch′(x6) ≤ 0.
Let x7 be a 7-vertex ofG. Note that ch(x7) = −3. Since no 3-vertex is adjacent

to a 3-face, x7 receives at most 3
7 from each face adjacent to it, and ch′(x7) ≤ 0.

The above argument implies that
∑
x∈V (G)∪F (G) ch

′(x) ≤ 0. On the other
hand, since

∑
x∈V (G)∪F (G) ch(x) =

∑
x∈V (G)∪F (G) ch

′(x), this contradicts
Lemma 3.1.

4. REDUCIBILITY

Let a minimal graph be a connected graph on the fewest edges, which has no total
9-coloring. To complete the proof of Theorem 1.1, it suffices to show the following.

Theorem 4.1. No minimal graph has a special vertex.
The ideas necessary to prove this are quite straightforward. Let G be a minimal

graph with a special vertex x. Refer to the table in Section 2 that lists the thirteen
types of special vertices. The second column of the table is what is at times known
as a reducer. Say that x is of type k, meaning described by the kth line of the
original table. Form a graphH fromG by deleting and adding the edges described
in the second column on the kth line, labeled according to the definitions of around
and surrounding.

Since G is minimal, the graph H has a total 9-coloring χ. Each type of special
vertex has certain obvious defining elements associated with it (e.g., the last type has
six defining vertices and ten defining edges). The coloring χ induces a partial total
k-coloring ψ of G, meaning that the defining elements are uncolored, everything
else is colored, and two distinct colored elements receive distinct colors. To prove
Theorem 4.1, it suffices to show that every such ψ arising from a total 9-coloring
of the reducer H extends to a total 9-coloring of G simply by assigning a color to
each uncolored (defining) element. This is clearly a finite problem.

As an example, consider the third type, a 4-vertex x adjacent to an (≤ 5)-vertex
y. Let H = G − xy; let χ be a total 9-coloring of H . This induces a partial total
9-coloring ofGwith only x, y, and xy uncolored. Color y with χ(y); this will give
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a partial total 9-coloring of G with only x and xy uncolored. Note that coloring x
with χ(x) may not give a partial total 9-coloring of G, as x and y are adjacent in
G, but not in H . Instead, note that xy has at most eight colored adjacent elements;
color it a color different from the colors of these. To finish, color x a color different
from the colors of its eight adjacent elements.

Unfortunately, a complete proof of this for all thirteen types is a long, te-
dious case analysis. A twenty-five page standard proof of this has been com-
pleted, but is too lengthy to include in this article. A copy may be found at
http://www.math.gatech.edu/∼thomas/DPS/. As an alternative to check-
ing that, the authors have also written a two page computer program to do the job,
available at the same Web site.

The authors hope that the same technique may be used to complete the proof of the
total coloring conjecture for planar and projective planar graphs. The reducibility
will only increase in difficulty, as this class of graphs includes large graphs almost
every vertex of which has degree equal to the maximum degree of the graph. It
seems worthy to pursue this, on the other hand, to verify the total coloring conjecture
for this important class of graphs.
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